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SELECTION OF A ZERO APPROXIMATION FOR THE POSITION OF

AN ARTIFICIAL EARTH SATELLITE IN A PHASE OF ITS

ORIENTED MOTION USING A DIPOLE APPROXIMATION

OF THE GEOMAGNETIC FIELD

V. S. Novoselov

1. Statement of the Problem /123

We will solve the problem of defining the zero approximation

for the angular position of a round AES in the phase of oriented

motion. In this phase, it is advisable to define the satellite's

position using "aircraft" angles P, , and 8. Here --the angle

of yaw, q--the angle of bank; and 0--the angle of pitch. For the

oriented motion of a satellite, we may adopt an approximation of

the angles *, c and 8 in the form of trigonometric polynomials in

terms of powers of the argument of latitude. We will limit our-

selves to considering terms of the second power:

= =Dn +D1 2 sin u+D 3 cos u+D1 4 sin 2u+DI5 cos 2u,
=Dp 21 +D 22 sinu +D 23 cos u+D 24 sin 2u+Dz5 cos 2u,

O=D +D 32 sin ua+Da cos u+D3 4 sin 2u+Da cos2u.
(1)

In formula (1), D = const (p = 1, 2, 3; q = 1, 2, 3, 4, 5) and

u is the argument of satellite latitude. For the circular orbit

in point u = 0t, where w0 is the orbital angular velocity, t is

time measured from the time of passage across the equator.

As we know,the geomagnetic field can be approximated to

within 12% by a dipole field with an axis coinciding with the

Earth's axis of rotation. Thus in defining the angular position

of the satellite, using a magnetometer to determin the zero appro-

ximation D , we will proceed from a dipole model of the Earth's
pq'
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magnetic field.

Let us designate by H , Hy and H z the projections of in-

tensity of the geomagnetic field onto the axes of a system rigidly

connected to the satellite. In complete orientation of the satel-

lite, the x axis is given as directed along the positive trans-

versal, the y axis--orthogonally to the orbital plane, and the z

axis--along the radius-vector of the center of mass. We will use

i to designate the orbital inclination of the AES to the equatorial

plane, and H0 will stand for some constant typical of the satel-

lite's flight altitude.

On the basis of a dipole model for small angles of orienta- /124
tion, we will write

HoHx=sini cos u+cos i+20 sin i sinu,
.Ho'H,= - sin i cos u+cos i-2q sin i sin t,
H-'Hz = sin i cos u- p cos i-2 sin i sinu. (2)

Given that we know, by the readings of the magnetometer,

the values H x , Hy and Hz in some phase of oriented motion of the

AES. To enhance the accuracy of these values, it is expedient to

statistically smooth the tables for Hx , Hy and Hz . Let us estab-

lish the shape of approximating formulas. For this purpose, let

us substitute the approximating expressions of (1) for the angles

of orientation on the right sides of the relations of formula (2).

We will then find that

H-'H x=Dli cos i+D 2 sin i+sin a (D12 cos i+2D31 sin i-
-D35 sin i) + os u (sin i +D 1, cos i +.D 3 sin i)+sin 2u (DI, cos i+

+D 33 sin i)+cos 2u (D1s-cos i-D 3 2 sin i)+

+Ds sin i sin 3u.-Da4 sin i cos 3u,

(3)
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rD-' = - o13 sin i+cos i-D sin isinu (- sini-

-2D 21 sin i+D2 sin i) + cos u (-Dl sin i -+Dis sin i-D 24 sin i) +

si sin2a - D 2sini-D 2 ssini) +

+cos 2u (-i 13sin + Dsin i

+sin3u ( D4 sini -IDa sin

- cos 3u (---D5 sin i + D sini).

(4)
Ho-!' =T D33 sin i-D 21 COs i- sin u (D,, sin i-2 sin i-

-D 22 cos i)+cos u (D, sin i + Da sin i-D, cos )

+ sin2u D 32 sini-D
24 coSI) +

+cos2u ( D3 sin'ip2-- cosi)+ -- D3 "s nsin'3u
-I

S+ D35 sin i cos 3u.-

(5)

Formulas (3)-(5) indicate that it is expedient to approxi- /125

mate the table of magnetometer readings in the form of trigono-

metric polynomials in terms of powers of the argument of latitude

with the computation of terms to the third power exclusiively:

HX==H1 I+H 2 sin u+ H, cos u+Hl sin 2u+
+H 5 cos 2u+H 16 sin 3u+H 17 cos 3u,

(6)

,=HH, +H 22 sin 3 coSU +H4 sin2 , cos 2u+
+H 26 sin 3u_+H 27 cos 3t (7)

Hz=H +H 32 sin u+H33cos u+H4 sin2u+

+H cos 2u+H36 sin 3u+H3 7 cos 3u. (8)
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In the zero approximation we will ignore errors in magneto-

meter readings after statistical smoothing. In other words, in the

zero approximation we will equate the values Hx , Hy and Hz obtained

through formulas (3)-(5) and (6)-(8). The coefficients D will be

marked with the exponent "zero."

Two approaches are possible. Approach (A), in which a stat-

istical smoothing in terms of the complete formulas (6)-(8) is con-

ducted, or the simplified approach (B), where statistical smooth-

ing is done on truncated trigonometric polynomials which contain

expansions to the second power, namely

= H+HI2 Sin UH cos u+H4 sin 2u+HI5 cos2u, (9)

H=H21 +H22 sin u+ cos u+H2 4 sin 2u+H25 cos2u,
(10)

-+H3 sin u+H3 cos u+H3  sin 2u+- cos2u. 11

Let us state the following problems. Problem 1: is' it pos-

sible, by using only magnetometer readings, to define D Since
pq

in section 2 it will be shown that problem 1 has a negative solu-

tion, problem 2 arises: how many additional conditions, which do

not depend on the magnetometer readings, must we have to define

DO and which formulas define DO if we use the value of angles\
pq pq

4, and 0 at several points in the orbit of AES motion. )P i em

2 is solved in section 3. It is also advisable to state problem

3: to define D if we know the readings of some second physical
pq

vector at several points in the orbit of satellite motion. This

problem is examined in section 4 of this study.
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2. Inadequacy of Magnetometer Readings for /126

Selection of a Zero Approximation of the Angular

Position of an Oriented AES using a Dipole Model

of the Field

Let us examine the simplified approach, (B). Given magneto-

meter readings which have been statistically smoothed through

formulas (9)-(11). We equate the free terms, and also the coef-

ficients at sin u, cos u, sin 2u, cos 2u in formulas (3)-(5) and
-1

(9)-(11) respectively, multiplied in advance by H0 . To define

D we will find the following equations:
pq

SDi, cos i +D32 sin i = HH 1,

D?2 cos i +2D'1 sin i-D 5 sin i =H 2H-',

DYi cos-i+D34 sin i= H,3Ho-1-sini, (12)

D 4 cos i +D'3 sin i =HI4Ho1,

D05 cos i--D 2 sin i=, 5sH'l;

--- D3 sini- D,2 sin i =H 21H --  cos i,

- D'4 sin i-2D1 sin i +D 5 sin i = H22

-(13)-D11 isini Dis sin i-Do sin i= Hf23-I

- Di sin i-D sin i= H,4 H-',

SD sin i+D2 sin i= H2 H;
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-- D3 sin i--D 1 cos i= HaHy',

-TD'4 sin i--D' cosi= HHo+ 2 sin i,

D 1 sin i + -- D 35 sin i-D2a cos i =H~HI ,

T D32 sin i-DO4 cosi=H3Ho1, (14)

-T Da sin i-D's cos i=H3 5 HH-.

Let us compose a matrix of coefficients for unknown D in /127
pq

equations (12)-(14)
D5=

cosO 0 00 0 0 0 0 0 0 O srt0 0 0

0 cosi 0 0 0 0 0 0 0 0 2At10 0 0 st

0 0 cosi 0 0 0 0 0 0 0 0 0 sint 0

0 0 osin 0 0 0 0 0 0 0 0 stIL 0 0

0 0 0 0 cosi 0 0 0 0 0 0 -sti 0 0 0

0-s -st 0 0 0 -sn iO 0 0 0 0 0 0 0

0 0 0-Istro -2sini o 0 0 siut 0 0 0 0 0 (15)

-stni 0 0 0- sir z 0 0 0-sta 0 0 0 0 0 0

0 - siO 0 0 0 0 0 -stni 0 0 0 0 0 0 0

0 O-.stai 0 0 0 sanz 0 0 0 0 0 0 0 0

00000 -cosi 0 0 0 0 0 0istai0 0

0 0 0 00 0 u-cost 0 0 0 0 0 0 srL 0

0 0 0 0 0 0 0 -cost 0 0 stni 0 0 0 0 s l

0 0 0 0 0 0 0 0 -cost 0 0 si n 0 0 0

0 0 0 0 0 0 0 0 0 -cosi 0 0 stnt 0 0

Given that i # 0 and i 4 1800, i.e., the AES orbit is not

equatorial. Let us multiply the elements of the 6th line of the

matrix (15) by 2cotani, elements of the 12th line by -2 and add

the obtained expressions with the corresponding elements of the



corresponding elements of the 3rd line. Then the elements of the

new third line will be zero. Given, furthermore, that i 3 900 . Let

us multiply the elements of the 4th line by 1/2 tan i, then elem-

ents of the llth line by -2tan i, and the elements of the 15th

line by tan i. We will add the obtained values with the correspond-

ing elements of the 7th line. As a result, the elements of the

new 7th line will be zero. Let us multiply the elements of the

ist line of the matrix DB by tan i, elements of the fifth line by

1/2 tan i, elements of the 14th line by -tan i and the obtained

expressions will be added to the corresponding elements of the 8th

line. The elements of the new 8th line will be zero.

We have shown that the 3rd equation of system (12), and like-

wise the 2nd and 3rd equations of system (13) will depend on the

other equations of (12)-(14). The rank of the matrix (15) is no

greater than 12. Equations (12)- (14) are insufficient to define

Dpq

Let us examine the same problem using approach (A). In this

case, statistical smoothing is done through formulas (6)-(8). We /128

equate free terms and also coefficients where sin u, cos u, sin

2u, sin 3 u, cos 3 u in formulas (3)-(5) and (6)-(8), respectively,
-1 0

have been previously multiplied by H0  To define D we will have
0 pq

equations (12)-(14) in which the 'tilde' exponent above Hpq has

been omitted, as well as the following additional equations:

ds 5 sin i=H 16H-' , -- D34 sin i=H,H-1 , (16)

- D 4sini-D 5 sin i=HH-,(17)
(17)

D' sin i D4 sin i =H27H ', (18)

TD4 snHHu 2 D3s sin i=H 3 A7H-' (19)
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On the basis of equations (16) and (19) we can assume that

D 4 =(Ho sin i)-' (H36- H17

.. ..o--- . (20)

D3s=(Hosin i)-'1 H H16 ). (21)

Equations (16) and (19) thereby will be excluded from the examin-

ation. By omitting dependents, the 3rd, 7th and 8th equations of

system (12)-(14), we will have 14 equations of a truncated system

(12)-(15) and (17), (18) to define 13 unknowns D0  (p = 1,2; q =
0 0 0

= i, 2, 3, 4, 5) and D31 , D32 , D33.

Let us write a matrix of coefficients with unknowns

cost 0 0 0 0 0 0 0 0 0 0 sln.t 0

0 cos1 0 0 0 0 0 0 0 2stL 0 0

0 0 0 0 0 0 0 0 0 0 0 sttu

0 0 0 0 cosl 0 0 -0 0 0 0 -sn't 0

0 0- sn t 0 0 0--sLa 0 0 0 0 0 0

0 -s 0 0 0 0 0 -sint 0 0 0 0. 0 0

o 0 -sint o 0 0 sa i 0 0 0 0 0 .0 (22)

0 0 0 0 0 -cost 0 0 0 0 0, 0 s.t

0 0 0 0 0 0-cet0 0 0 0 0 0

0 .0 0 0 0 0 0 -cs 0 0 stniO 0

0 0 0 0 0 0 0 0 -cost0 0 st 0

0 0 0 0 0 0 0 0 0 -cosi 0 0 SLRLt

0 0 0 o-sinio 0 0 0 0 -sini 0 0 0

o o000 -o osini'0 0 0st0 0 0 0

Let us consider, as before, the non-degenerate case i # /129

/ {O0, 900, 1800} . Let us multiply the elements of the 14th line

of matrix DA by 2 cotan i, elements of the llth line by 2 and add

to the corresponding elements of the 4th line. Then all elements

of the new 4th line will be equal to zero. Let us multiply the
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elements of the 2nd line of matrix (22) by - , elements of the 6th

line by -cotan i and add them to the corresponding elements of the

10th line. All elements of the new 10th line will be zero. Let

us multiply the elements of the 4th line by 1/2, elements of the

14th line by cotan i. By adding the obtained expressions to the

corresponding elements of the llth line, we derive a new llth line

with zero elements. Let us now multiply the elements of the 3rd
1

line of matrix DA by - 2, elements of the 13th line by -cotan i

and add them to the elements of the 12th line. The elements of the

new 12th line will all be equal to zero. We have shown that the

4th, 10th, llth and 12th equations of this system will be functions

'of the other equations. The rank of matrix (22) is no greater than

10. Equations (12) and (17) are insufficient to define the desired

13 unknowns.

Let us now consider degenerate cases. Given that sin i = 0.

The rank of matrix (15) is equal to 10. Equations (12) of approach

(B) yield
D= H (Ho cos i)-', D 2 +H 12 (H cosi) ,

(23)

0 -1 0 -1 0-
D H (H c os i) D1 4  H 4 (Hcos i) = H15 (H0cos i)

The left sides of equations (13) vanish. In this case we must

have -
SH21 0=Hcosi, 22=0, Hn =O, . .24 0, H25 0.

(24)

Equations (14) yield

D =--H31 (Ho cos i)-', D 2 = -H 39 (Ho cos i)-,

D= -- (Ho cos i)-', D 4= -Ha (Ho cos i)-',

D5 = -Ha (Ho cos i)-!. (25)

9



Formulas (23)-(24) are derived according to formulas (2) where

sin i = 0.

Thus, for motion in the equatorial orbit, with the aid of

a magnetometer in approach (B), we can uniquely define fluctua ,
tions in angles * and and pitch fluctuations of the satellite

in the indicated plane are not defined. The zero approximation

for the trigonometric approximation of satellite fluctuations

in yaw and bank can be calculated through formulas (23) and (25).

The left sides of additional equations (16)-(18), obtained by

approach (A) for sin i = 0, vanish. Thus in this case, approach

(A) is equivalent to approach (B).

Let us consider a second degenerate case, i = 900 . The /130

elementary transformations show that the rank of matrix (15) is

equal to 8. We can use the first 4 equations of system (12) and

(14) as our independents, and also equations of system (13). Thus

to define the zero approximation of the satellite's angular posi-

tion, appraoch (B) requires us to have another 6 independent con-

ditions. For the particular case of plane oscillations of a satel-

lite in polar orbit, the angle 8 is subject to definition. Among

equations of (12) only 4 independents will exist. And we require

one additional independent condition. For the case i = 900,

equations (12) might be reduced to the form

2D -D3 5 =H 12HoI, D32 = H1 Ho =-H 1 5H,

D- = HI4H , (26)

D4= -1 +HzHo-.

Formulas (26) show that in this particular case, the coefficients
0 0 0

D3 2 , D3 3 and D are defined by magnetometer readings uniquely;
0 0

to define the coefficients D31 and D35, however, we require ad-

ditional independent condition.

10
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We will discuss the second degenerate case with the aid of

formulas of approach (A). Since equations (14) in this case depend

on equations (12), from which only the first 4 are independents,

then taking (17), (19) and (20) into account, we arrive at a sys-

tem of equations for 13 unknowns D (p = 1, 2; q = 1, 2, 3, 4, 5)
0 0 0 Pq

and D 1, D32 , D3 3 with the following coefficient matrix:31 32 33

PA (7- 90° )

0 0 0 0 00 0 0 O sn tO

0 0 0 0 0 0 0 .0 0 0 2stnL0 0

000 00 0 0 0 0 0 0 00

0 0 0 0 0 0 000 0 0stu

0 0 -sn 0 0 0, -sti 0 0 0 0 0 0

0 0 0-~smnt 0 --2s5mz0 0 0 sm 1 0 0 0

-sLf 0 0 0 snz 0 0 0 -s O 0 0 0 0 0

0 - smL 0 0 0 0 0 o-suT 0 0 0 0 0 (27)

0 0 -stnz 0 0 O:smTL 0 0 . 0 0 0

0 0 O-stjat 0 0 O--stn .0 0 0

0 0 0 0 -siLna 0 0 0 sini 0 0 0 0

0 0
The coefficients D34 and D are defined by formulas (19) and (20)/13134 35
The first, 2nd and 4th lines of matrix ( 27)show that in the given

case the first three coefficients of the approximating trigono-

metric polynomial for angle 0 will be uniquely defined. In real-

ity, the ist, 2nd and 4th equations of system (12), allowing for

(20), here yield

D-= ( H12+ -TH 16 +H37) H- 1 ,D -H -1 D

D02 1 D33=H14H -1 (28)

Thus, in approach (A), fluctuations in the plane of the polar orbit

by magnetometer readings are uniquely defined. But in defining

fluctuations in angles t and p for 10 unknowns, we only have 7

equations. Thus we require 3 additional independent conditions.
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3. Definition within the Framework of A Dipole

Model of the Zero Approximation of the Angular Position

of an Oriented Satellite, if the Values of the Angles

for Several points are Known

'Analysis of degenerate cases conducted in the preceeding

section showed that several coefficients of approximating poly-

nomials for orientation angles are defined by magnetometer read-

ings uniquely, whereas to define other coefficients additional

independent conditions are required. It appears useful for un-

degenerate cases to isolate those coefficients of approximating

polynomials which uniquely are defined by magnetometer readings,

to find clear expressiones for these coefficients, and then ex-

amine the question of defining the remaining coefficients in the

presence of additional information on the value of orientation

angles at several points in the satellite's orbit.

We will consider a undegenerate case, i.e., given that

sin i f 0, cos i 0, the 3rd, 7th and 8th equations of system

(12)-(14) are dropped, since they are dependent on the others. The

remaining 12 equations of system (12)-(14) are transformed with

the aid of elementary transformations. Equations of system (12)-

(14) will be written thus:

Dii cos i+D2sin i=HH-1,-
(29)

S-- H 12 ctgiH24 +H33(Hs in i)-',
(30)

D14 COS i+D 3 sin i= H H
(31)

Df+D0s (H.+Hls) (Ho cos i)
- ,

- (32)

D= 7 ctgi (H21 25) (H0 sin i)-17 (33)
1233)

12



D 2+D -H 4 (H0 sin i)- (34)/132

Da= ctg i- (H21 +7Y5) (H sin i)-1'
(35)

D14 +2D'2 = (H14-2H 1 ) (Ho cos i)-1,
(36)

D 4= 4+ ctg 2 i-(ctg i H21-ctgi H25 -2H 3 2 ) (Ho sin i)- (37)

D-asD2 s - - +ctgiH 24 + H, . (38)

D7l +2D 4=(H -- 2H 4 ) (Ho cos i)Y

(39)

D,-D5 s= = -(H 1-l H3 5) (HO cos i)- .
(40)

The system of equations (29)-(40) shows that 4 coefficients

D1 3 , D22 , D3 4 and D05 are defined uniquely by magnetometer read-

ings. The other 11 unknowns have 8 equations (29), (31) , (32) , (34),

(36), (38-40).

Given that the values of angles 4, 0, and 8 are defined for

values of the argument of latitude uk with the aid of local con-

trol of orientation by measurement of two or )more physical vectors.

In this case, additional equations (which follow) can be composed:

D 1 +D12 sin ua+D'sCos uk±D•4 sin 2a D+DDao Cos 2 u i= (u), (41)

D21 +D 2 S Din WHD cos D sin 2uk+ Dscos-2u= (uA) ,-t (42)

D' 1 +D:b Sjfl U+D33 COs su+D3 2fU4iTu+D- C6s-2UO Tu-). (3)

With the aid of formulas (30), (33), (35), (37), we will exclude
0 0 0 0

from equations (41)-(43) the coefficients DI3 D22 , D34 , D35 ; then

we transform the obtained equations, using formulas (29), (31) , (34),

(36), (38-40). The sequence of transformations is reflected on

13



the right sides of the relationships which follow--these are trans-

formed equations for (41)-(43), respectively:

D1 sin u+D14 cos u,-D2 = 2sinU [ (uk)-D13 cos U4-

cos 2
Uk -sin k .1C o ( H + 2 H , (44)

-(Di sin Uk+D'4 cos u)+D3= C -- (ua)-D-2 sin uk+

cos ukcosi ( 5_ M 1 4 -M 3 1 ) H~c1 
-

+ (HCo H 1 ) '+co 2'o 7os'

sin 2u" -t,%--H3 H '-

o s ncos 2

(45)

-(DIY sin u,+D14 cos au) +D2) =tg i (uk)-D34 sin 2u.-

-D cos 2 u- in UH- Cos u

3 ( 1 s) ~ j~ )
&L 2 sin i +2+ctgi 24+i H)= -k.

(46)/133

In writing equations (44)-(46), cases of sin uk = 0 and

cos uk = 0 are eliminated. The left sides of equations (45) and

(46) are derived from the left side of equation (44) by multiply-

ing it by -1. System (44)-(46) contains only one independent equ-

ation.

Let us introduce the notation

Qk=7(qk+0k+Ok). (47)

On the average, system (44)-(46) is tantamount to a single equation
0

SD1 sin uk+D14 COs -oD3 Qk. (48)

For the completeness of the system of determinant equations,

we must minimally know the angular position of the AES at three
14



different points for ul, u2 and u3 . Let us fulfill the sequential

computations of equations of type (48) for the three indicated

values of the argument of latitude

.Di1 (sin ua-sin U2)+D 4 (COS uI--COS U2)= QI-Q 2,
DOl (sin ul--sin u3)+D 4 (cos ul-cos u3) Q1-Q 3.

(49)

We will resolve equations (49) relative to D0 and D0
11 14

D6. 01 (cos u.-cos u2)+Q 2 (COS u-COS s)+Qa (coS u 2-cos ul)
s~_ (cs Sin (u3-u 2)+sin(UI--U3S)+sin (u2-u1)

(50)
S -. Q1 (sin u3-sin 2)+Q 2 (sin -sin U3)+Q3 (sin 2 -Sin 1 )

sin (u 3 -U 2)+ sin (Ul--i )+ sin (U2-UI)
(51)

With the aid of equation (48) we will find, on the average, that

D I3 [DL (sin uu+sin ,+sin 3 )+

S ( S . (52)

The clear expressions found above were for 7 coefficients
0 0 0 0 0 0 0D , D1 3 , D 4 , D22 , D23 , D34 and D35. Equations (32) and (34)

make it possible to define D and D in the form12 15

D .2= .2 (H, .sin i-- .D ), (53)

Di= (Hll+H 5) (Ho cos i)-l-Dl. (54)

With the aid of formulas (36), (39), and (40) we find that /134

= H 4 -H3 1 (Hcosi)-- D4, (55)

D4= 1 HI- (Hcos')- 1 2LJ (56)

15



D0i=(H31-H 3 5) (Hocos i)- +D12 . (57)

Equations (29), (31) and (38) permit us to define the remaining

unknowns

D01 =- - +ctgi 243+ (H0 sin i)-'+DO ctg i,
(58)

D32=Hn, (Ho sin i)- D 1 ctg i,
(59)

' Dki H1  (Ho sini)---D4 ctgi . (60)

We have examined this case for approach (B). Let us find

out what simplifications can be derived by using approach (A).

In approach (A) we also need 3 additional independent equations;

we will retain equations (29)-(-40), but on the ri ght sides we
0 0

drop the exponent 'tilde.' Coefficients D34 and D35 can be cal-

culated both by formulas (20), (21) and by formulas (30), (37).

The use of data on the angular position at ,two points is done

just as in approach (B). We will have the same final formulas

(48), (51), and (52). Furthermore, formulas (53)-(60) can be

used, but in the first parts of these we omit the exponent 'tilde.'
0 0

The coefficients D24 and D25 can also be defined by formulas'6b-

tAitable from (17)-(18)

D24=H7 (HoSsin i)- +D1 , (61)

1 (62)

D 5s='--H2 6 (Ho sin i)-'- -T-D 4 .

Thus, the use of formulas of approach (A) does not lead to

any simplifications. We should note that to calculate by formulas

(20), (21) and (61), (62) which take place only for approach (A)

is hardly expedient, since these formulas contain less precisely

defined coefficients with third harmonics. Thus the working

16



formulas will be (30), (33), (35), (37), (48), (51)-(60), which

are valid for approaches (A) and (B). But the statistical smooth-

ing of measured values of Hx, Hy and H is best done by formulas

(6)-(8), since more reliable values of the coefficients will be

obtained.

4. Definition in a Dipole Model of the Zero /135

Approximation of the Angular Position of an Oriented

Satellite if the Direction of the Second Vector is

Known for Several Points

Given in a system of coordinates (x, y, z) rigidly connected

to the body of the AES we make a measurement of the direction of

some vector S (direction toward the Sun, Earth or other pody).

For a point with the argument of latitude uk we will have measured

values cos (Sk, x), cos (Sk' y)° and cos(Sk, z). According to the

model of motion of the observable body directional cosines of the

same direction have been calculated in the orbital system: cos(Sk,
x0 ), cos(Sk, y0) and cos(Sk, z0). The x0, y0, z0 axes ,coincide

with the x, y, z axes in satellite orientation.

For small angles of orientation, by analogy with formula

(2) we will write

cos (Sk, x)=cos (S., xo)+p cos (Sk, yo)-6 cos (S,, zo),
cos (S1, y)=.--_ cos (S, Xo)+ cos (Si, Yo)+(' cos (Sk, zo),
cos (S,, z)=6 cos (Sk, X0)- cos (Sk, yo)+cos (Sk, Z0) (63)

Let us substitute expressions(l) in formula (63)

(D 1 +D 2 S9 sinu +D13cos lUk+D14 sin 2 Uk+ D 5 cos~2ak cos (S, yO) -
-(D03I+D3 2 sin uk+Di3 cos u +D sin 2u,+Ds cos 2u)cos(Sk, z0 )
S=cos(Sk, x)--cos(S, x), (64)

(64)
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l oi • ...... C'SI-l4Sin k/Dg +"os2u
+(D.-+D22 sinUk,+D' cosu k +Dso 2 1 Dcos2k) cos (Sk, xo)++ (D '+D°2 lsk+D23 cosU+D 24 Sin 2 ukD... COS2Uk) .

-cos(S, y)-cos(S, osk (S (65)

SCos14-f-&S iJ~ 4 n 2afD scos 2
ak) os (Ski y)+

t(D iU+D2 sin ±O2co 2Uk) COS (S,, x0)

cos (Sk, z)-cos (S, zo).
(66)

With the aid of formulas (30),, (33), (35), (37) we will

exclude from equations (64)-(66) the coefficients D , DO 2 , DO 4

D ; then transform the obtained equations, using formulas (29),

(31), (34), (36) , (38)-(40). The sequence of transformations is

reflected on the right sides of the transformations cited below

D. siifuk+D4 cos ttk-DO= [2 sinuk cos'(Sk, yo)+
+ctg i cos (S, zo)] - ' [cos (Sk, x)-cos (Sk, xo)-

-DO cos Uk cos (S, y0)+D34 sin-2ucos (S*, zo)+

+D35 cos 2 Uk cos (Sk, zo)+Hn, (Ho sin i)-:sin uk cos (S,, zo)+

+H 4 (Ho sini)-1 cos a1 cos (Sk, z) + 12 ctgiH2 4 H33) X

X (H0 sTn i)-' cos (Sk, zo)-7 (H 1i5)(Hoc O Si )- ' COS 2uk cos (Sk, yo)+

+2H 24 (Ho sin i)-' sin uk cos (Sk, Yo)]= ,. (67)

S--(D 1I sin Uk+D°4 cos uk) +D= /136
=[2 sin uk cos (S,, xo)+cos u, cos(Sk, z0o)]_ 1 cos (Sk, y)-cos (Sk, Yo)+-+D% cosUk cos (Sk, xo)-D 2 sin u cos (Sk, zo)+

+ (H35-H 3 1 ) (Ho cos i)' cos 2u cos (Sk, zo) - 11 1- H )X

X(Ho COs i)-' sin 2 u, cos (S, z,)-2 (-H,4-,) x

X (Ho cos i)- cos2 u cos (Sk, z0)+(H 1 +H 5) (Ho cos i)-' X
Xcos 2 Uk cos (Sk, x 0)-2H2 4 (Ho sin i)- ' sin ukcos (Sk, xo)] -- , (68)
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-(D1 sin ut+D4 cos k) +D3=

=[-cos Uk cos (Sk, yo)+ctgi cos (Sk, xo)]- 1 [cos (Sk, z)-cos (Sk, Z)+
•+D' sin uk cos (Sk, yo)-(D34 sin 2uk+DS' cos 2Uk) cos (Sk, X0 )-

-sin-' i sin ut cos (Sk, x 0) HIH--sin-1 i cos uk7cos (SAXO) H14H- '-

- sin-'i cos (Sk, x 0 ) (H12+ctg H",+3) 1+

+2 cos-' i cos2 Uk COS (S, yO,) (-H,4- 3H
2

+cos-' i sin2uk cos (Sk, Yo) (H-i-H4 H-+

S+cos- icos 2 kcos (Sk, yo) (H 31 -H)H-]--86 
/

(69)

Equations (67)'-,(69) are a system of 3 equations of which

only one is independent. For the correct definition of the zero

approximation we must know the direction of the second physical

vector at at least 3 different points in the orbit.

Equations (67)-(69) have the form of equations (44)-(46),

if in the latter the quantities Tk k and Ok are replaced by
I I Ik' 1k 0 0 0

k' k and 0 k, respectively. Thus to define D 1 , D and D
we have formulas (50)-(52), in which Qk is replaced by the quan-

tities

(70 ) '

5. General Remarks on the Method of Spectral

Approximation

1. .Equations of system (2) are functionally dependent, since
D(H , H , H z )D(H y z 0. The corresponding relationship can be written as

ctg i H,=sin i ( ctg 2 i Tcos 2u) Ho-H cos u+2H, sinl (71)

Thus, omitting equations (13), we come to 10 equations (12) and /137

(14), the rank of matrix for which in the undegenerate case is 10.
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This derviation follows from the fact that the determinant for

unknown D and D 2 is equal to (-1) 5cos l0i. Calculation of terms

of the third power in approach (A) will permit us to write ad-

ditional equations (16) or (19). We find, as in section 2, that

we have a system with rank 12.

In approach (B) we have no additional equations (16), (19).

But the equations derived in section 2, as research in sections

3 and 4 showed, also have rank 12. To explain the cause of this

circumstance, we equate free terms, and also terms where sin u,

cos u, sin 2u and cos 2u are on the left and right sides of formula

(71). We will have, respectively

ctgi H21= sini ( ctg2 i )Ho- -H,+H,-

ctg i H 22 - -2 H14-+,2H31 - H35,

ctg i H23== -H 1 - - H 15+H 34,

1 1
ctgiH24= -.- H12 +H 3 3- T H16--H37 (72)

1 I
ctg i H25 = s- - H 13 --- 32- H17+H 36

Since two last equations of system (72) contain coefficients

in trigonometric functions sin 3u and cos 3u in approximating

formulas for Hx and Hz (not examined in approach B), then these

two equations in this approach should not be satisfied. Thus

in approach (B) relationship (71) must be satisfied only partial-

ly ; it becomes possible to derive two independent equations. For

the problem of selecting the zero approximation which will then

be refined, this position is completely admissible.

2. As was noted, system (2) has only two functionally',



independent equations. The question arises as to whether or not

this system can be supplemented after differentiated equations (2)

H'HlH= -sin i sin u+p' cos i+26' sin i sin u.28 sin i cos u,
HolH' = -y' sin i cos u + sin i sin u-2' sin i sin u-

\- 2 sin i cos u,
H -'H=O' sini cos u- sini sin u-' cos i+2 sin i cosu. (73)

If the approximating formulas (1) are substituted in (73), and

the coefficients in sin u, cos u, sin 2u, cos 2u on the left and

right sides of equation (73) are equated, we derive 12 equations

to define 15 unknown D . But these equations will coincide with /138
pq

the system consisting of the last 4 equations of each of systems

(12-(14), since the operation .f differentiation and substitution

instead of i, 4 and e of the approximating polynomials can ex-
change places. Thus in the use of spectral approximation of the

orientation angles for some interval of time of 6s§cillatory motion

of the AES about the center of mass, the differentiated relations

in (2) are automatically satisfied.

3. It was suggested above that the axis of the magnetic

dipole coincides with the Earth's axis of rotation. If we reject

this suggestion, then the displacement of the magnetic pole both

in latitude and longitude will be calculated by the formulas

-,-/1=sin i,, cos (u+uo)+I, cos i,+20 sin i, sin (u+uo),

H-'Hz =--- sin i, cos (u+uo)+cos i,,-2p sin i, sin (u+ uo),

.H-'H, = sin i, cos (u+uo)-~ cos i.--2 sin i, sin (U+uo).
(74)

Here iM is the inclination of,,the plane of the circular orbit of
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the center of mass of the satellite to the magnetic equator; u0 is

some constant. Expressions (2) and (74) show that all formulas

derived in this study will take place for the case in point, if

the arguments of latitude u are replaced by u + uO, and inclina-
tion i by iM . The general conclusions on the methods of construc-

ting the zero approximation for the angular position of an arti-

ficial satellite in the phase of oriented motion remain in force

--when the more precise model of the geomagnetic field is used.

4. To enhance the accuracy of the zero approximation, it is

useful to define the geomagnetic field model with the aid of a

fragment of the Gaussian series. The methods of the present

study can be used if projections of intensity of the geomagnetic

field onto the axes of the orbital system of coordinates are

smoothed in advance in the.form of trigonometric polynomials in

terms of powers of the argument of latitude.

22


